ECE1: Correction du D.M. n°6

$$\begin{array}{ll} 1. \ a) \ f'(x) = 1 - \frac{n}{x} = \frac{x-n}{x} & \lim_{x \to 0} \ln(x) = -\infty \ donc \ \lim_{x \to 0} f_n(x) = +\infty \\ \ln(x) =_{+\infty} o(x) \ donc \ f_n(x) \sim_{+\infty} x & \lim_{x \to +\infty} f_n(x) = +\infty \\ & f_n(n) = n - n \ln(n) = n(1 - \ln(n)) \end{array}$$

$$\ln(x) =_{+\infty} o(x) \text{ donc } f_n(x) \sim_{+\infty} x \qquad \lim_{x \to +\infty} f_n(x) = +\infty \qquad \qquad f_n(n) = n - n \ln(n) = n(1 - \ln(n))$$

X	0		n		+∞
x - n		_	0	+	
X		+		+	
f _n '(x)		_	0	+	
f _n (x)	+ ∞				+∞
	~	<u></u>			×
		$n - n \ln(n)$			

b) Si
$$n \ge 3 \ln(n) \ge \ln(3) > 1 \text{ donc } n(1 - \ln(n)) < 0$$

Sur $]0;+\infty[$, f_n est continue et strictement décroissante. De plus $0 \in [n-n\ln(n);+\infty[$. Donc d'après le théorème de la bijection, l'équation $f_n(x) = 0$ admet une unique solution u_n sur]0;n[. De la même manière, l'équation admet une unique solution v_n sur l'intervalle n; $+\infty$ [.

Donc
$$0 < u_n < n < v_n$$
.

$$2. \ a) \ f_n(1) = 1 - nln(1) = 1 > 0 \quad \ f_n(e) = e - nln(e) = e - n < 0 \ car \ n \geq 3 \quad \ f_n(u_n) = 0$$

Donc $f_n(e) \le f_n(u_n) \le f_n(1)$. f_n est décroissante sur]0;n], donc $1 \le u_n \le e$.

$$\begin{array}{l} b) \ f_n(u_{n+1}) - ln(u_{n+1}) = u_{n+1} - nln(u_{n+1}) - ln(u_{n+1}) = u_{n+1} - (n+1)ln(u_{n+1}) = f_{n+1}(u_{n+1}) = 0 \\ Donc \ f_n(u_{n+1}) = ln(u_{n+1}). \end{array}$$

 $u_{n+1} \ge 1$ donc $ln(u_{n+1}) \ge 0$ donc $f_n(u_{n+1}) \ge 0 \Leftrightarrow f_n(u_{n+1}) \ge f_n(u_n)$.

 f_n étant décroissante sur]0;n], $u_{n+1} \le u_n$ donc (u_n) est décroissante.

c) (u_n) est décroissante et minorée par 1, donc (u_n) converge vers un réel L.

$$Or \ ln(u_n) = \frac{u_n}{n}. \qquad \qquad 1 < u_n < e \ donc \ \frac{1}{n} \leq \frac{u_n}{n} \leq \frac{e}{n} \qquad donc \ \frac{1}{n} \leq ln(u_n) \leq \frac{e}{n}. \quad \lim_{n \to +\infty} \frac{1}{n} = \lim_{n \to +\infty} \frac{e}{n} = 0$$

Donc d'après le théorème des gendarmes, $\lim \ln(u_n) = 0$.

$$u_n = e^{\ln(u_n)}$$
 Donc $\lim_{n \to +\infty} u_n = e^0 = 1$

d)
$$\lim_{n \to +\infty} u_n - 1 = 0$$
 donc $\ln(1 + (u_n - 1)) \sim_{+\infty} u_n - 1$ (car $\ln(1 + X) \sim_0 X$)

$$\Leftrightarrow \ln(u_n) \sim_{+\infty} u_n - 1$$

Or
$$ln(u_n) = \frac{u_n}{n}$$
 et $\lim_{n \to +\infty} u_n = 1$ donc $ln(u_n) \sim \frac{1}{n}$ donc $u_n - 1 \sim_{+\infty} \frac{1}{n}$

3.
$$\forall$$
 $n \in \mathbb{N}$, $v_n > n$. $\lim_{n \to +\infty} n = +\infty$, donc par comparaison, $\lim_{n \to +\infty} v_n = +\infty$.

Exercice 2

1) Sur]- ∞ ;0[, f est continue car nulle

Sur $]0; +\infty[$, f est continue comme produit de fonctions continues.

En 0:
$$\lim_{t \to 0, t \le 0} f(t) = \lim_{t \to 0, t \le 0} 0 = 0$$
 $\lim_{t \to 0, t > 0} f(t) = \lim_{t \to 0, t > 0} \sqrt{t \ln(t)} = 0$ (croissances comparées) donc f est continue en 0.

Donc f est continue sur \mathbb{R} .

2) Sur]- ∞ ;0[, f est dérivable car nulle, sur]0; + ∞ [, f est dérivable comme produit de fonctions dérivables.

$$\begin{split} En \; 0: & \lim_{t \to \, 0, \; t \, < \, 0} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to \, 0, \; t \, < \, 0} 0 = 0 \\ & \lim_{t \to \, 0, \; t \, > \, 0} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to \, 0, \; t \, > \, 0} \frac{\sqrt{t ln(t)}}{t} = \lim_{t \to \, 0, \; t \, > \, 0} \frac{ln(t)}{\sqrt{t}} = - \infty \end{split}$$

Donc f n'est pas dérivable en 0 (mais dérivable à gauche). C_f admet une demi-tangente horizontale à gauche, et une demi-tangente verticale à droite.